Control Tutorials for MATLAB and Simulink (2024)

Below is the function lnyquist.m. This function is a modified version of MATLAB's nyquist command, and has the same attributes as the original, with a few improvements. The function lnyquist.m plots

(log2(1+abs(G(jw))),angle(G(jw))

in polar coordinates by taking the log of the magnitude, the magnitude scale is compressed and the overall shape of the Nyquist plot is easier to see on the screen. We use log base 2 and add one to the magnitude so as to preserve the key attributes of the -1 point for the Nyquist plot.

The lnyquist function also takes poles on the imaginary axis into account when creating the Nyquist plot, and plots around them.

Copy the following text into a file lnyquist.m. Put the file in the same directory as the MATLAB software, or in a directory which is contained in MATLAB's search path.

 function [reout,imt,w] = lnyquist(a,b,c,d,iu,w) %LNYQUIST Nyquist frequency response for continuous-time linear systems. % % This Version of the NYQUIST Command takes into account poles at the % jw-axis and loops around them when creating the frequency vector in order % to produce the appropriate Nyquist Diagram (The NYQUIST command does % not do this and therefore produces an incorrect plot when we have poles in the % jw axis). % % NOTE: This version of LNYQUIST does not account for pole-zero % cancellation. Therefore, the user must simplify the transfer function before using % this command. % % LNYQUIST(A,B,C,D,IU) produces a Nyquist plot from the single input % IU to all the outputs of the system: % . -1 % x = Ax + Bu G(s) = C(sI-A) B + D % y = Cx + Du RE(w) = real(G(jw)), IM(w) = imag(G(jw)) % % The frequency range and number of points are chosen automatically. % % LNYQUIST(NUM,DEN) produces the Nyquist plot for the polynomial % transfer function G(s) = NUM(s)/DEN(s) where NUM and DEN contain % the polynomial coefficients in descending powers of s. % % LNYQUIST(A,B,C,D,IU,W) or LNYQUIST(NUM,DEN,W) uses the user-supplied % freq. vector W which must contain the frequencies, in radians/sec, % at which the Nyquist response is to be evaluated. When invoked % with left hand arguments, % [RE,IM,W] = LNYQUIST(A,B,C,D,...) % [RE,IM,W] = LNYQUIST(NUM,DEN,...) % returns the frequency vector W and matrices RE and IM with as many % columns as outputs and length(W) rows. No plot is drawn on the % screen. % See also: LOGSPACE,MARGIN,BODE, and NICHOLS. % % J.N. Little 10-11-85 % Revised ACWG 8-15-89, CMT 7-9-90, ACWG 2-12-91, 6-21-92, % AFP 2-23-93 % WCM 8-30-97 % ******************************************************************** Modifications made to the nyquist - takes into account poles on jw axis. then goes around these to make up frequency vector % % if nargin==0, eval('exresp(''nyquist'')'), return, end --- Determine which syntax is being used --- nargin1 = nargin; nargout1 = nargout; if (nargin1==1),% System form without frequency vector [num,den]=tfdata(a,'v'); z = roots(num); p = roots(den); zp = [z;p]; wpos = zp(find(abs(zp)>0)); if(min(abs(p)) == 0) wstart = max(eps, 0.03*min([1;wpos])); else wstart = max(eps, 0.03*min(abs(zp))); end wstop = max([1000;30*wpos]); w = logspace(log10(wstart),log10(wstop),max(51,10*max(size(zp))+1)); %w = freqint2(num,den,30); [ny,nn] = size(num); nu = 1; %error('Wrong number of input arguments.'); elseif (nargin1==2), if(isa(a,'ss')|isa(a,'tf')|isa(a,'zpk')) % System with frequency vector [num,den]=tfdata(a,'v'); w = b; else% Transfer function form without frequency vector num = a; den = b; z = roots(num); p = roots(den); zp = [z;p]; wpos = zp(find(abs(zp)>0)); if(min(abs(p)) == 0) wstart = max(eps, 0.03*min([1;wpos])); else wstart = max(eps, 0.03*min(abs(zp))); end wstop = max([1000;30*wpos]); w = logspace(log10(wstart),log10(wstop),max(51,10*max(size(zp))+1)); %w = freqint2(num,den,30); end [ny,nn] = size(num); nu = 1; elseif (nargin1==3), % Transfer function form with frequency vector num = a; den = b; w = c; [ny,nn] = size(num); nu = 1; elseif (nargin1==4), % State space system, w/o iu or frequency vector error(abcdchk(a,b,c,d)); [num,den] = ss2tf(a,b,c,d); [z,p,k]= ss2zp(a,b,c,d); [num,den] = zp2tf(z,p,k); zp = [z;p]; wpos = zp(find(abs(zp)>0)); if(min(abs(p)) == 0) wstart = max(eps, 0.03*min([1;wpos])); else wstart = max(eps, 0.03*min(abs(zp))); end wstop = max([1000;30*wpos]); w = logspace(log10(wstart),log10(wstop),max(51,10*max(size(zp))+1)); %w = freqint2(a,b,c,d,30); nargin1 = 2;%[iu,nargin,re,im]=mulresp('nyquist',a,b,c,d,w,nargout1,0); %if ~iu, if nargout, reout = re; end, return, end [ny,nu] = size(d); elseif (nargin1==5), % State space system, with iu but w/o freq. vector error(abcdchk(a,b,c,d)); z = tzero(a,b,c,d); p = eig(a); zp = [z;p]; wpos = zp(find(abs(zp)>0)); if(min(abs(p)) == 0) wstart = max(eps, 0.03*min([1;wpos])); else wstart = max(eps, 0.03*min(abs(zp))); end wstop = max([1000;30*wpos]); w = logspace(log10(wstart),log10(wstop),max(51,10*max(size(zp))+1)); %w = freqint2(a,b,c,d,30); [ny,nu] = size(d); else error(abcdchk(a,b,c,d)); [ny,nu] = size(d); end if nu*ny==0, im=[]; w=[]; if nargout~=0, reout=[]; end, return, end ********************************************************************* depart from the regular nyquist program here now we have a frequency vector, a numerator and denominator now we create code to go around all poles and zeroes here. if (nargin1==5) | (nargin1 ==4) | (nargin1 == 6) [num,den]=ss2tf(a,b,c,d); end tol = 1e-6; %defined tolerance for finding imaginary poles z = roots(num); p = roots(den); ***** If all of the poles are at the origin, just move them a tad to the left*** if norm(p) == 0 if(isempty(z)) tad = 1e-1; else tad = min([1e-1; 0.1*abs(z)]); end length_p = length(p); p = -tad*ones(length_p,1); den = den(1,1)*[1 tad]; for ii = 2:length_p den = conv(den,[1 tad]); end zp = [z;p]; wpos = zp(find(abs(zp)>0)); if(min(abs(p)) == 0) wstart = max(eps, 0.03*min([1;wpos])); else wstart = max(eps, 0.03*min(abs(zp))); end wstop = max([1000;30*wpos]); w = logspace(log10(wstart),log10(wstop),max(51,10*max(size(zp))+1)); %w = freqint2(num,den,30); end zp = [z;p]; % combine the zeros and poles of the system nzp = length(zp); % number of zeros and poles ones_zp=ones(nzp,1); %Ipo = find((abs(real(p))<1e-6) & (imag(p)>=0)) %index poles with zero real part + non-neg imag part Ipo = find((abs(real(p)) < tol) & (imag(p)>=0)); %index poles with zero real part + non-neg imag part if ~isempty(Ipo) % **** only if we have such poles do we do the following:************************* po = p(Ipo); % poles with 0 real part and non-negative imag part check for distinct poles [y,ipo] = sort(imag(po)); % sort imaginary parts po = po(ipo); dpo = diff(po); idpo = find(abs(dpo)>tol); idpo = [1;idpo+1]; % indexes of the distinct poles po = po(idpo); % only distinct poles are used nIpo = length(idpo); % # of such poles originflag = find(imag(po)==0); % locate origin pole s = []; % s is our frequency response vector %w = sqrt(-1)*w; % create a jwo vector to evaluate all frequencies with for ii=1:nIpo % for all Ipo poles [nrows,ncolumns]=size(w); if nrows == 1 w = w.'; % if w is a row, make it a column end; if nIpo == 1 r(ii) = .1; else % check distances to other poles and zeroes pdiff = zp-po(ii)*ones_zp; % find the differences between % poles you are checking and other poles and zeros ipdiff = find(abs(pdiff)>tol); % ipdiff is all nonzero differences r(ii)=0.2*min(abs(pdiff(ipdiff))); % take half this difference r(ii)=min(r(ii),0.1); % take the minimum of this diff.and .1 end; t = linspace(-pi/2,pi/2,25); if (ii == originflag) t = linspace(0,pi/2,25); end; % gives us a vector of points around each Ipo s1 = po(ii)+r(ii)*(cos(t)+sqrt(-1)*sin(t)); % detour here s1 = s1.'; % make sure it is a column % Now here I reconstitute s - complex frequency - and % evaluate again. bottomvalue = po(ii)-sqrt(-1)*r(ii); % take magnitude of imag part if (ii == originflag) % if this is an origin point bottomvalue = 0; end; topvalue = po(ii)+sqrt(-1)*r(ii); % the top value where detour stops nbegin = find(imag(w) < imag(bottomvalue)); % nnbegin = length(nbegin); % find all the points less than encirclement if (nnbegin == 0)& (ii ~= originflag) % around jw root sbegin = 0 else sbegin = w(nbegin); end; nend = find(imag(w) > imag(topvalue)); % find all points greater than nnend = length(nend); % encirclement around jw root if (nnend == 0) send = 0 else send = w(nend); end w = [sbegin; s1; send]; % reconstituted half of jw axis end else w = sqrt(-1)*w; end %end % this ends the loop for imaginary axis poles ************************************************************* back to the regular nyquist program here Compute frequency response if (nargin1==1)|(nargin1==2)|(nargin1==3) gt = freqresp(num,den,w); else gt = freqresp(a,b,c,d,iu,w); end *********************************************************** nw = length(gt); mag = abs(gt); % scaling factor added ang = angle(gt); mag = log2(mag+1); % scale by log2(mag) throughout for n = 1:nw h(n,1) = mag(n,1)*(cos(ang(n,1))+sqrt(-1)*sin(ang(n,1))); end; % recalculate G(jw) with scaling factor gt = h; *********************************************************** ret=real(gt); imt=imag(gt); If no left hand arguments then plot graph. if nargout==0, status = ishold; plot(ret,imt,'r-',ret,-imt,'g--') plot(real(w),imag(w)) modifications added here %******************************************* % set(gca, 'YLimMode', 'auto') limits = axis; % Set axis hold on because next plot command may rescale set(gca, 'YLimMode', 'auto') set(gca, 'XLimMode', 'manual') hold on % Make arrows for k=1:size(gt,2), g = gt(:,k); re = ret(:,k); im = imt(:,k); sx = limits(2) - limits(1); [sy,sample]=max(abs(2*im)); arrow=[-1;0;-1] + 0.75*sqrt(-1)*[1;0;-1]; sample=sample+(sample==1); reim=diag(g(sample,:)); d=diag(g(sample+1,:)-g(sample-1,:)); % Rotate arrow taking into account scaling factors sx and sy d = real(d)*sy + sqrt(-1)*imag(d)*sx; rot=d./abs(d); % Use this when arrow is not horizontal arrow = ones(3,1)*rot'.*arrow; scalex = (max(real(arrow)) - min(real(arrow)))*sx/50; scaley = (max(imag(arrow)) - min(imag(arrow)))*sy/50; arrow = real(arrow)*scalex + sqrt(-1)*imag(arrow)*scaley; xy =ones(3,1)*reim' + arrow; xy2=ones(3,1)*reim' - arrow; [m,n]=size(g); hold on plot(real(xy),-imag(xy),'r-',real(xy2),imag(xy2),'g-') end xlabel('Real Axis'), ylabel('Imag Axis') limits = axis; % Make cross at s = -1 + j0, i.e the -1 point if limits(2) >= -1.5 & limits(1) <= -0.5 % Only plot if -1 point is not far out. line1 = (limits(2)-limits(1))/50; line2 = (limits(4)-limits(3))/50; plot([-1+line1, -1-line1], [0,0], 'w-', [-1, -1], [line2, -line2], 'w-') end % Axis plot([limits(1:2);0,0]',[0,0;limits(3:4)]','w:'); plot(-1,0,'+k'); if ~status, hold off, end % Return hold to previous status return % Suppress output end %reout = ret; % plot(real(p),imag(p),'x',real(z),imag(z),'o'); 


Published with MATLAB® 9.2

Control Tutorials for MATLAB and Simulink (2024)

References

Top Articles
Borussenweg in 14621 Schönwalde-Glien Schönwalde-Siedlung (Brandenburg)
Landgut Schönwalde in Schönwalde-Glien - Unterkunft buchen
Funny Roblox Id Codes 2023
Www.mytotalrewards/Rtx
San Angelo, Texas: eine Oase für Kunstliebhaber
Golden Abyss - Chapter 5 - Lunar_Angel
Www.paystubportal.com/7-11 Login
Steamy Afternoon With Handsome Fernando
fltimes.com | Finger Lakes Times
Detroit Lions 50 50
18443168434
Newgate Honda
Zürich Stadion Letzigrund detailed interactive seating plan with seat & row numbers | Sitzplan Saalplan with Sitzplatz & Reihen Nummerierung
978-0137606801
Nwi Arrests Lake County
Missed Connections Dayton Ohio
Justified Official Series Trailer
London Ups Store
Committees Of Correspondence | Encyclopedia.com
Jinx Chapter 24: Release Date, Spoilers & Where To Read - OtakuKart
How Much You Should Be Tipping For Beauty Services - American Beauty Institute
How to Create Your Very Own Crossword Puzzle
Apply for a credit card
Unforeseen Drama: The Tower of Terror’s Mysterious Closure at Walt Disney World
Ups Print Store Near Me
How Taraswrld Leaks Exposed the Dark Side of TikTok Fame
University Of Michigan Paging System
Random Bibleizer
10 Best Places to Go and Things to Know for a Trip to the Hickory M...
Receptionist Position Near Me
Gopher Carts Pensacola Beach
Duke University Transcript Request
Nikki Catsouras: The Tragic Story Behind The Face And Body Images
Kiddie Jungle Parma
Lincoln Financial Field, section 110, row 4, home of Philadelphia Eagles, Temple Owls, page 1
The Latest: Trump addresses apparent assassination attempt on X
In Branch Chase Atm Near Me
Appleton Post Crescent Today's Obituaries
Craigslist Red Wing Mn
American Bully Xxl Black Panther
Ktbs Payroll Login
Jail View Sumter
Thotsbook Com
Funkin' on the Heights
Caesars Rewards Loyalty Program Review [Previously Total Rewards]
Marcel Boom X
Www Pig11 Net
Ty Glass Sentenced
Michaelangelo's Monkey Junction
Game Akin To Bingo Nyt
Ranking 134 college football teams after Week 1, from Georgia to Temple
Latest Posts
Article information

Author: Madonna Wisozk

Last Updated:

Views: 5786

Rating: 4.8 / 5 (48 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Madonna Wisozk

Birthday: 2001-02-23

Address: 656 Gerhold Summit, Sidneyberg, FL 78179-2512

Phone: +6742282696652

Job: Customer Banking Liaison

Hobby: Flower arranging, Yo-yoing, Tai chi, Rowing, Macrame, Urban exploration, Knife making

Introduction: My name is Madonna Wisozk, I am a attractive, healthy, thoughtful, faithful, open, vivacious, zany person who loves writing and wants to share my knowledge and understanding with you.